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Abstract

Along with the introduction of the Basel II Accord and its huge implications for

credit risk management, modeling, estimating, and forecasting the loss given default

(LGD) have become increasingly important tasks. Whereas much is known about the

LGD for loans and bonds, this is not the case for leasing contracts. Using a proprietary

data set of 1,184 defaulted corporate leases in Germany, this study explores different

parametric and non-parametric approaches attempting to forecast and explain the

LGD. We compare the in-sample and out-of-sample prediction accuracies of the his-

torical average, OLS and Tobit regressions; in terms of non-parametric methods, we

consider regression trees (RTs), random forests (RFs), and artificial neural networks

(ANNs). By conducting these analyses for different points in time, we study how pre-

diction accuracy changes depending on the set of available information. Furthermore,

using a variable importance measure, we identify the input variables with the greatest

effect on LGD prediction accuracy for each method. We find that (1) more sophisti-

cated non-parametric methods, especially RFs, generally outperform linear methods

leading to a remarkable increase in the prediction accuracy, (2) default related infor-

mation improves prediction accuracy considerable, and (3) the outstanding exposure

at default, the work-out duration, and an internal rating turn out to be important

drivers of accurate LGD predictions.

Keywords: Loss given default, forecasting, variable selection methods, leasing.

JEL Classification: C14 (semi-parametric and non-parametric models), C53 (forecasting

and prediction methods), G17 (financial forecasting and simulation), G32 (financial risk

and risk management).
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I Introduction

Modeling loss given default (LGD) has become increasingly important for banks since

the Basel II and III frameworks were introduced. Especially in the advanced internal

ratings-based approach (A-IRBA) banks are required to use own estimates for LGD to

quantify their credit risk exposure accurately. Along with the regulatory changes in credit

risk measurement, a varied body of literature has more and more shifted its focus to-

wards modeling, estimating, and forecasting LGD rather than the probability of default

(PD).1 In addition to the regulatory requirements, having accurate LGD forecasts and

estimations is also important for financial institutions from an internal risk management

perspective for adequate pricing and management of credit risk (Hartmann-Wendels et al.

(2014)). Moreover, higher accuracy in LGD forecasts and estimations can generate com-

petitive advantages, as precise knowledge about potential losses is indispensable for both

an adequate pricing of leasing contracts and an efficient allocation of regulatory capital.

Accurate LGD predictions may be particularly important in the case of leases, since the

legal title of the leased asset remains with the lessor for most leasing contracts, implying

that the lessor can retain all utilization proceeds in excess of the exposure at default.

Hence, the LGD of leases can take values below zero, which can be considered as a financial

gain for the lessor. Moreover, in contrast to loans, it is often possible to repossess the asset

promptly (Eisfeldt and Rampini (2009)). Maximizing recoveries of repossessed assets

on secondary markets is therefore of major importance for the lessor and as a part of

their day-to-day business not only restricted to defaulted leases. Likewise, lessors are

usually supposed to have a good understanding of the liquid secondary markets, which

facilitates disposal of the often standardized assets and lowers potential losses. Due to these

characteristics of leasing contracts, it becomes obvious that accurate LGD predictions are

indispensable for banks and leasing companies to increase revenues from asset disposal.

This paper contributes to the existing literature on LGD predictions by exploiting a unique

dataset of 1,184 defaulted leasing contracts concluded with small and medium-sized en-

terprises (SMEs) in three ways. First, we apply different parametric and non-parametric

methods to predict LGD. Interestingly, the existing literature does not present an unam-

biguous picture in terms of which method achieves the most accurate predictions. Whereas

some work has been carried out predicting the LGD of defaulted loans using parametric

1 Selected works on PD classification techniques include Davis et al. (1992), Hand and Henley (1997),
Baesens et al. (2003), and Yeh and Lien (2009). An overview on recent contributions is given in
Lessmann et al. (2015).
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techniques (e.g., Yashkir and Yashkir (2013)), applying non-parametric techniques in or-

der to estimate the LGD is a relatively new field of research (Loterman et al. (2012)).2

Although non-parametric methods, such as random forests (RFs) and artificial neural

networks (ANNs), are highly sophisticated and well-developed approaches that have at-

tracted huge interest in statistics and machine learning, the broad application to credit

risk modeling and especially LGD of some of these techniques is still lacking in the liter-

ature. In addition, extremely little is known about the goodness of fit of these modern

non-parametric methods when applied in estimating the LGD of defaulted leases, which

is surprising given the important role of proper risk management for leasing contracts.

As LGDs are commonly known to be rather difficult to predict, particularly by para-

metric methods, non-parametric methods may help to detect additional patterns in the

data, thereby improving the prediction performance. We contribute to this field of re-

search by comparing the in-sample and out-of-sample accuracies of several parametric and

non-parametric methods for predicting the LGD of defaulted leasing contracts.

In terms of the second area studied in this paper, almost all studies dealing with the

prediction of LGD solely focus on the question of which method performs best in terms of

generating the lowest prediction error rather than investigating which variables are indeed

driving the results. However, simply working with the model output in order to assess the

credit risk of a portfolio and looking at the methods as a black-box may induce the risk of

having weak or even unstable methods. To provide first insights on these possibilities, we

identify the importance of the input variables in each prediction method and show how

they behave across the different methods. Having a clear view of the main determinants

of LGD predictions is important for both banks and regulators to be able to evaluate the

appropriateness of the applied methods. Moreover, knowing the parameters that improve

the accuracy of LGD predictions may provide guidance on what information should be

carefully collected for each contract.

As a third topic, the prediction accuracy of LGD may considerably depend on the avail-

able information (Hartmann-Wendels et al. (2014)). Methods only using variables that

are known when the contract is concluded (hereafter referred to as LGD forecasting) are

much more restricted in terms of the available set of information than those prediction

models enriched with additional information gained after the work-out is completed (here-

after referred to as LGD estimation).3 We examine whether using additional information

2 A few nameable exceptions are discussed in Section II.
3 To clarify our notation, we use the phrase “prediction” as a more general term comprising both fore-

casting and estimation. Whenever we do not unambiguously speak of either forecasting or estimation,
we will refer to this as prediction.
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obtained during the life of a lease improves prediction accuracy. As more information

is usually available after the work-out process is complete, we expect that including this

additional information will improve estimation accuracy. Updating the LGD estimates for

defaulted leases by including additional information gained from the work-out is required

by the regulator for banks applying the A-IRBA of the Basel framework (EU Regulation

No 575/213, Article 179). Furthermore, forecasting LGDs is important for developing

reliable expectations about the inherent credit risk of leasing portfolios and assessing the

riskiness of new leases. Hence, both precise LGD forecasts and accurate LGD estimations

are relevant for lessors.

Considering the three main aims of the study, we first show that more sophisticated

prediction methods can improve LGD predictions, and identify RFs as generating the

best results consistently. Second, we show that information obtained during the contract’s

lifetime or after default can improve predictions considerably. Third, we identify variables

driving the results in the forecasting and the estimation cases.

Ultimately, we uncover a clear trend whereby RFs generate the lowest prediction errors in

the forecasting and estimation case. The ANN outperforms the regression tree (RT) and

the linear methods in-sample for both the forecasting and estimation cases. This resembles

the fact that ANNs are more flexible than the other approaches. In the out-of-sample case,

the results depend on whether we are using the methods to forecast or estimate the LGD.

In most cases, the forecasting methods produce predictions that outperform the historical

average in a statistically significant way. We also underline existing evidence that out-of-

sample testing is crucial to obtain comparable and reliable results concerning the models’

performance. By comparison, the out-of-sample estimation results for the ANN and in

particular the RF do outperform the other three prediction methods in a meaningful way.

To the best of our knowledge, this is the first study using RFs in LGD predictions for

leases. Whereas the very good in-sample fit is not too surprising by construction, the high

out-of-sample prediction accuracy clearly indicates that the RF identifies patterns in the

data that the other methods will most likely not detect.

Our results clearly indicate that models built conditional on default generate considerably

better predictions than unconditional models. Hence, our findings suggest that in addition

to lessee and contractual related information, banks should also make use of information

becoming available during the work-out process, or in some cases, even during the lifetime

of the contract.
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To analyze the importance of our explanatory variables, we compute the relative changes

in the prediction errors for each method when permuting a single variable. By doing

so, we examine the relative relevance of the permuted variable for LGD predictions. We

find remarkable differences across all variables regarding their strongly different effects

on the prediction accuracy. In the forecasting case, we show that the results are mainly

driven by an internal rating and a distinction between industries and asset types. The RF

further incorporates information about the exposure size, the distance between the lessee

and the lessor, and characteristics of the business cycle. In the estimation case, the most

relevant characteristic is the outstanding exposure as a fraction of the contract’s original

size. This is consistent with respect to all five methods. Our results identify the duration

of the work-out process and the exposure at default as significantly influencing prediction

accuracy. In addition, the initial internal rating and the distinction between industries

and asset types are important.

The remainder of the paper is organized as follows: Section II reviews the related literature.

Section III briefly describes our dataset and discusses the measurement of the LGD. Section

IV introduces the applied methods and presents the methodical framework. Section V

reports the empirical results. Section VI concludes.
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II Literature review

A lot of work has been done in order to investigate the determinants of LGD by looking

at the prices of defaulted bonds (e.g., Altman and Kishore (1996), Altman et al. (2005),

Varma and Cantor (2005), and Acharya et al. (2007)) and loans (e.g., Araten et al. (2004),

Frye (2005), Dermine and Neto de Carvalho (2006), Grunert and Weber (2009), Khieu

et al. (2012), and Han and Jang (2013)). Although leasing has become increasingly impor-

tant for (small and medium-sized) firms as an alternative form of financing, findings on the

LGDs of leasing contracts are far less comprehensive in the empirical credit risk literature.

Schmit and Stuyck (2002) and Laurent and Schmit (2005) show that the LGD depends

on the type of contract as well as the contract’s age at the time of default. Furthermore,

De Laurentis and Riani (2005) point out that the LGD depends on the lessee’s form of or-

ganization and whether the contract is protected with collateral. In terms of the influence

of the macroeconomic environment on LGD, the existing evidence is mixed (Schmit and

Stuyck (2002), Laurent and Schmit (2005), and Hartmann-Wendels and Honal (2010)).

The restricted interval of LGDs, which is typically between 0 and 1 for bonds and loans,

and the frequently observed bimodality impose some challenges for LGD modeling as

well as for regression analysis (Asarnow and Edwards (1995) and Grunert and Weber

(2009)). More recently, the focus on LGDs in credit risk management has shifted towards

proposing and benchmarking different parametric, non-parametric, and semi-parametric

methods that – at least theoretically – can account for bounded and bimodally distributed

LGDs. Furthermore, some studies have explicitly assessed the applicability of the proposed

methods for the purpose of forecasting LGDs in an out-of-time and/or out-of-sample setup.

The study by Gupton and Stein (2002) represents one of the first approaches to account

for the specific LGD characteristics in a regression model by transforming raw LGDs

into normally distributed LGDs using both the cumulative beta distribution function and

the standard normal quantile function for bonds, loans, and preferred stock. By means

of Italian bank loans, Calabrese and Zenga (2010) elucidate the drawbacks of adopting

common (beta) kernel density estimates for LGD distribution modeling. As a remedy,

they propose a beta inflated regression model for LGD, which is a mixture of a Bernoulli

distribution and a continuous random variable estimated using a mixture of beta kernel

estimators. Sigrist and Stahel (2011) extend the Tobit model using a censored gamma

regression model and test it with LGDs from insurance data. They find their method to

produce a better fit to the data than other tested parametric methods. Several parametric

regression methods are calibrated and tested by Yashkir and Yashkir (2013) on the S&P
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LossStats database, including Tobit regressions, inflated beta regressions, and censored

gamma regressions. Interestingly, their study reveals that, with respect to the goodness-

of-fit of their methods, the thorough choice of explanatory variables is of major importance,

whereas the type of method only plays a minor role. We consider this important finding

in our analyses when examining the importance of our set of explanatory variables across

several prediction methods. Hlawatsch and Ostrowski (2011) explicitly take into account

the bimodality of LGD distributions by using a mixture of two beta distributions. In a

simulation study, they find that their approach is superior to the benchmark methods and

more capable of imitating a bimodal distribution.

Turning toward non-parametric methods applied in more recent studies on the prediction

of LGD, Qi and Zhao (2011) compare ANNs and RTs with several parametric meth-

ods, including fractional response regression and regression-transformation methods, for

a sample based on Moody’s Ultimate Recovery Database. In their study, they show

that non-parametric methods usually produce more accurate results than their paramet-

ric counterparts. However, they point out that the methods’ ability to generate a bimodal

distribution for LGDs is only of minor importance since those methods that are able to

produce such a pattern do not necessarily yield good predictions. Bastos (2010) evaluates

the prediction accuracy of fractional response regression and a RT model to predict LGD

out-of-sample and out-of-time for Portuguese bank loans. In several out-of-sample tests,

he finds that the prediction accuracy of the analyzed methods depends on the chosen

recovery horizon, clearly indicating that no method is generally superior to another.

A surprising result is obtained by Bellotti and Crook (2012) for a portfolio of UK credit

cards. They benchmark a decision tree method with several other approaches, including

fractional response regression, the Tobit model, and transformation regression methods

for LGD and find that OLS regressions in combination with macroeconomic explanatory

variables turn out to be the best forecasting approach. The prediction performance of 24

regression techniques is tested in a comprehensive benchmarking study for six bank loan

portfolios by Loterman et al. (2012). Their methods comprise linear methods, non-linear

methods such as RTs, support vector machines, and ANNs as well as two-stage models

that basically combine logistic or OLS regressions with other linear or non-linear tech-

niques. Although much of the LGD cannot be explained by the methods and variables

under consideration, the authors observe that non-linear methods – especially ANNs and

support vector machines – and the two-stage models clearly outperform the pure linear

methods. To some extent, these results are confirmed by Tobback et al. (2014) for LGD

data on home equity and corporate loans. They provide evidence that the best out-of-time
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prediction is given by a two-stage model, whereas RTs perform best in the out-of-sample

analysis. However, a pure support vector regression model is considered to produce poor

results. Similar to Bellotti and Crook (2012), Tobback et al. (2014) show that the predic-

tive power of the methods can be improved by including macroeconomic factors. Different

improved support vector regression models are also considered in Yao et al. (2015) and

compared to other linear and non-linear methods for corporate bonds from Moody’s Ulti-

mate Recovery Database. For the entire sample of all bonds, the proposed support vector

regression techniques are found to yield the best prediction performance. However, when

the sample is differentiated between the bond’s seniority, a least squared support vector

regression technique still provides a good model fit, while the prediction performances

of the parametric fractional response regression and linear regression methods become

significantly better for bonds of higher seniority classes.

In terms of leasing portfolios, prediction methods for LGDs of leases are a relatively new

field of research and have only been studied in a rudimentary fashion. To the best of

our knowledge, Hartmann-Wendels et al. (2014) is the only study dealing with prediction

methods for leases. The authors conduct in-sample and out-of-sample analyses using

model and decision trees, hybrid finite mixture distributions and OLS regressions. Their

results suggest that finite mixture distributions, which try to reproduce the empirically

observed LGD distribution, are only adequate for in-sample testing but fail in the out-

of-sample analysis. In contrast, model trees show convincing performance in the out-of-

sample tests and consistently outperform RTs. The richness of our dataset enables us to

enhance the findings of Hartmann-Wendels et al. (2014) in two important ways. First, we

also examine which explanatory variables are the main determinants of LGD predictions.

Second, we propose new parametric and non-parametric prediction methods for leases

that take into account the characteristics of the LGD of leases and/or have been found to

produce noteworthy results for loans.
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III Data

We use a proprietary dataset provided by a mid-sized German bank containing information

about 26,735 active and terminated leasing contracts concluded with SMEs, including one-

man businesses, between 1999 and 2014. In total, 1,189 contracts have defaulted between

April 2009 and December 2014. The dataset provides us with a great variety of information

on (1) lessee and firm characteristics, (2) contractual characteristics, and (3) additional

data on defaulted leases. This enables us to split up the set of variables potentially

influencing the LGD in information already known when the contract is concluded (groups

(1) and (2)) and default-related information that becomes accessible when the work-out

is completed (group (3)). Including information obtained from group (3) implies that

our model is calibrated conditional on default whereas a model ignoring group (3) data

would be unconditional. We expect that conditional models using additional information

gathered during the work-out process and during the lifetime of the lease will show better

prediction accuracies. Gürtler and Hibbeln (2013) raise several issues concerning the data

selection in the context of LGD that may result in biased LGD estimates. Our sample

selection is consistent with the improvements suggested by Gürtler and Hibbeln (2013),

and hence, we do not expect similar concerns in our study. Most importantly, their results

suggest that accounting for the different points in time during the life of a lease when

information becomes available is essential to achieve unbiased LGD forecasts respective

estimations. We carefully follow this view in our paper by distinguishing between models

built conditionally on default and unconditional models. Moreover, the inputs used in

these models may differ with the bank’s purpose of evaluating data on LGD, and they

are therefore of major economic relevance: On the one hand, if banks aim at forecasting

LGDs for borrowers applying for new leases, only information for groups (1) and (2) is

ascertainable. On the other, estimating LGDs using the entire amount of information

(groups (1)–(3)) is often carried out in connection with backtesting and ex post model

validation.

We apply the bank’s definition of default which, is consistent with the regulatory frame-

work; that is a contract is classified as defaulted if a lessee has become insolvent or is

overdue with his payments on the underlying contract.4 When validating our data, we

4 Note that a default is not assigned to a lessee but to a contract. The reasoning behind this strategy is
that lessees can sign multiple contracts with the bank and a default on one (or more) contract(s) does
not necessarily imply a default on other contracts provided that the lessee still meets the payments
for those contracts.
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drop five contracts from the initial sample because of a negative exposure at default; thus,

the final sample comprises 1,184 defaulted contracts.

For the defaulted contracts, we calculate the LGD on a contractual level as one minus

the recovery rate using a simplified work-out approach. We define recovery rates as the

cash inflows collected by the bank after a contract has defaulted in proportion to the

exposure at default. Due to the availability of detailed information on the cash inflows,

we distinguish between liquidation proceeds of the leasing item on secondary markets and

other collected payments during the work-out process. Hence, the recovery rate and LGD,

respectively, are defined as

RRi :=
Liquidation proceedsi + Other paymentsi

Exposure at Defaulti
and LGDi = 1−RRi. (III.1)

The LGD is calculated without considering the time value of liquidation proceeds and

other payments, since we were not provided with detailed information on the distribution

of the intermediate cash flows collected by the bank between a contract’s default and the

end of the work-out. However, using undiscounted LGDs instead, does not systematically

bias our dataset, as deviations between time value-adjusted and undiscounted LGDs are

found to be negligible (Franks et al. (2004) and De Laurentis and Riani (2005)).

Our dataset enables us to feed our methods with a great variety of variables that have

been found to potentially influence LGD to analyze predictors for accurate LGD forecasts

and estimations. Table 1 provides a comprehensive summary of all variables used in our

analyses.

Consistent with other studies on LGDs, contrary to loans, LGDs are not restricted to

the unit interval. As indicated by Figure 1, LGDs are not symmetrically distributed, but

rather left skewed. In our sample, the lowest LGD equals −427.4%, whereas the mean

LGD equals 36.4%. On average, LGDs of leases are lower than their counterparts usually

reported for loans. Our dataset contains 111 contracts with a negative LGD, i.e., a recovery

rate larger than, which can be considered as a financial gain for the lessor. Excluding those

contracts however, would result in an average LGD of 43.8%, which comes fairly close to

both the LGD values typically reported for loans and the LGD of 45% prescribed in the

Basel Foundation IRBA for unsecured receivables. Moreover, the LGD peaks at values of

around 0%, 40%, and 100%. This characteristic seems to be specific for leasing portfolios,

and a similar pattern has also been found by Hartmann-Wendels et al. (2014) for two of

three leasing portfolios under consideration. In contrast, the empirical literature on loans
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has often found the LGD to be bimodally distributed, with modal values close to either 0

or 1 (e.g., Dermine and Neto de Carvalho (2006) and Caselli et al. (2008)).

Figure 1: LGD for 1,184 defaulted leasing contracts.
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Table 1: Input variables for LGD forecasts and estimations.

Type Variable Description Info. Source

C
o
n
tr
a
c
t

C
h
a
r
a
c
te

r
is
ti
c
s

SIZE ORI Amount of the leasing contract when it was written (log(Euro)) Ex ante Bank

D COLL Dummy for provision of any type of collateral (1 = yes/0 = no) Ex ante Bank + CS

DUR CONTRACT Contractually agreed duration of contract i (log(days)) Ex ante Bank

SPEC PAYMENT Advance payments (special lease payments) by lessee (log(Euro)) Ex ante Bank

D OBJMULT Dummy for contracts that comprise multiple objects Ex ante Bank

D FA Dummy for full amortization contracts (1 = yes/0 = no) Ex ante Bank

D PA Dummy for partial amortization contracts (1 = yes/0 = no) Ex ante Bank

D HP Dummy for hire-purchase contracts (1 = yes/0 = no) Ex ante Bank

D EQUIP Dummy for items classified as factory and office equipment (1 = yes/0 = no) Ex ante Bank + CS

D ELEC Dummy for items classified as electronic devices (1 = yes/0 = no) Ex ante Bank + CS

D V EHIC Dummy for items classified as vehicle or car accessories (1 = yes/0 = no) Ex ante Bank + CS

D MACH Dummy for items classified as machinery (1 = yes/0 = no) Ex ante Bank + CS

L
e
ss
e
e

C
h
a
r
a
c
te

r
is
ti
c
s

D LIMITED Dummy for limited liability of the lessee (1 = yes/0 = no) Ex ante Bank + CS

RAT INT BOND IRR minus yield of the 10-year German government bond (%) Ex ante Bank + IMF

DISTANCE Linear distance between the lessee and the closest branch of the bank (log(km)) Ex ante Bank + C

D SERV Dummy for lessees operating in the services industry (1 = yes/0 = no) Ex ante Bank + CS

D CONST Dummy for lessees operating in the construction industry (1 = yes/0 = no) Ex ante Bank + CS

D TRADE Dummy for lessees operating in the trade industry (1 = yes/0 = no) Ex ante Bank + CS

D MANU Dummy for lessees operating in the manufacturing industry (1 = yes/0 = no) Ex ante Bank + CS

D MOV ED Dummy for lessees that moved during the life of the lease (1 = yes/0 = no) Ex post Bank + C

D
e
fa
u
lt

C
h
a
r
a
c
.

DUR WORK Duration of the work-out process (log(days)) Ex post Bank + C

SIZE DEF Size of the leasing contract at default (log(Euro)) Ex post Bank + C

PROP PAID Outstanding exposure at default in relation to the amount of the leasing contract (%) Ex post Bank + C

M
a
-

c
r
o GDP INI Quarterly GDP growth rate when leasing contract was written (%) Ex ante DESTATIS

INSOL DEF Firm’s quarterly insolvency rate in Germany one quarter prior to default (%) Ex post DESTATIS

NB: The table specifies the variables used in our models to forecast and estimate LGDs. We logarithmize SIZE ORI, DUR CONTRACT ,
SPEC PAYMENT , DISTANCE, DUR WORK, and SIZE DEF due to skewness. “Info.” specifies whether a variable is observable when
the contract is concluded (“ex ante”) or when the work-out is completed (“ex post”). “C” or “CS” means that we derived the respective variables
from data in the bank’s leasing portfolio using own calculations or employing a classification scheme, respectively. “DESTATIS” refers to the Federal
Statistical Office of Germany and IMF denotes the International Monetary Fund. IRR is the contract’s internal rate of return and GDP denotes the
Gross Domestic Product.
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IV Forecasting and Estimation Methods

IV.1 Parametric methods

As outlined above, we compare forecasting and estimation results for different parametric

and non-parametric methods. Specifically, we apply OLS and Tobit regressions as the

parametric estimation techniques. We use the historical average of LGDs as a benchmark

for all methods. To take into account that LGDs for leasing contracts are bounded at 1

in the higher domain (if work-out costs are not incorporated) but unbounded in the lower

domain, we use the Tobit regression model. If β and xi denote the vector of coefficients,

respectively, the vector of explanatory variables for observation i, εi the error term, and

assuming that the latent variable for LGD is given by

LGD∗i = β′ · xi + εi, and εi|xi ∼ N(0, σ2), (IV.1)

then

LGDi =

 LGD∗i −∞ < LGD∗i < 1,

1 LGD∗i ≥ 1.
(IV.2)

The Tobit model is estimated using maximum likelihood methods.

Running linear regressions assumes that the distribution of the error term is (approxi-

mately) normal distributed. However, as can be inferred from the LGD distribution in

Figure 1, LGDs in our dataset are not normally distributed; thus, linear regression tech-

niques applied to predict LGD violate this assumption. Hence, predicting LGD by means

of linear regression methods is not without problems from a statistical perspective (Zhang

and Thomas (2012) and Hartmann-Wendels et al. (2014)). As LGD distributions of leasing

portfolios are commonly multi-modal, often cannot be described with a single distribu-

tion, and vary remarkably depending on the dataset, applying methods that ex ante do not

make any assumptions concerning the distribution of the underlying data or the functional

relationship with the explanatory variables could be more suitable for obtaining reliable

LGD predictions. Therefore, we implement the three non-parametric methods described

below to forecast and estimate the LGD. A further advantage of non-parametric methods

is that they are often better at coping with non-linear and more complex relationships.
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IV.2 Regression Trees and Random Forests

The use of classification and regression trees (CART) is first suggested by Breiman et al.

(1984). Regression Trees (RT) represent a non-linear, non-parametric method in which a

tree structure comprising multiple logical if-then conditions is built. RTs are constructed

by sequentially partitioning a dataset along values of the explanatory variables to produce

partitions that are as little heterogeneous as possible in terms of the dependent variable.

The heterogeneity of a partitionA, A ⊆ {1, 2, ..., n}, where n is the number of observations,

is given by an impurity measure I that maps a higher variation of dependent variable values

to larger numbers. In the case of metric variables, the impurity of a partition A in this

study is given by the sum of squared errors (SSE), defined as

I := SSE(A) =
∑
i ∈ A

(
LGDi − LGDA

)2
, (IV.3)

where LGDA describes the mean of the dependent variable in partition A. In each node

of the tree, a split θ is chosen such that the two resulting partitions, i.e., the left (l) and

the right (r) tree node Aθl ⊂ A and Aθr ⊂ A, Aθl ∩ Aθr = ∅, have a lower SSE combined

compared to the original partition. The split can be chosen from all possible binary splits

of the explanatory variables (e.g., SIZE ORI < 10, 000 or RAT INT BOND ≤ 12.4).

When there is more than one possible split, the one yielding to the highest decrease in

SSE is chosen; i.e., each split θ satisfies

max
θ
I(A)−

(
I(Aθl ) + I(Aθr)

)
= max

θ
SSE(A)−

(
SSE(Aθl ) + SSE(Aθr)

)
. (IV.4)

The algorithm continues to split the dataset until a predefined stop criterion is fulfilled. In

our case, this stop criterion is given by a minimum increase in R2 by a factor of 0.01. The

resulting tree structure consists of the split rules in the tree nodes and the partitions in

the terminal nodes. When making predictions for new observations, the new observation

is assigned to one terminal node using the split rules. The prediction is then given as the

average dependent variable value in this tree node.

RTs are accessible for interpretation and produce results that are comparable to other

more complex methods in many applications. However, a concern may be the tendency

to overfit or underfit data depending on the chosen stop criterion. A fully developed tree

may have a terminal node for each observation, leaving it unappropriated for out-of-sample

prediction. In contrast, an extremely flat tree may have low explanatory power. However,

the chosen stop criterion to construct the trees ensures that overfitting or underfitting
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the data is mostly avoided. Moreover, given the discontinuity of the possible prediction

values, small variations in an independent variable may cause an observation to end up

in a leaf node with an extremely different predicted value. To tackle these concerns, we

conduct comprehensive out-of-sample tests to ensure that the RTs are adequately fitted

to the data, as well as to mitigate large prediction errors due to the discontinuity in the

predictions.

As enhancements to RTs and to cope with the potential overfitting, Breiman (1996) sug-

gests the use of ensemble methods. In particular, he proposes random forests (RF), which

represent an ensemble method of building multiple trees and using the mean prediction

aggregating over all trees as the prediction of the RF (Breiman (2001)). The rationale for

this is that aggregating the prediction of many different trees mitigates the problem of

overfitting. To produce a variety of dissimilar trees, a random sub-sample of the dataset

is selected to build each tree. The trees are fully developed with no stop criterion. To

produce even more diverse trees, Breiman (2001) introduces random feature selection,

which reduces the variables available for choosing a split in each node to a randomly se-

lected sub-sample of all explanatory variables. The RF is easy to calibrate but produces

qualitatively good results in many situations.

IV.3 Artificial neural networks

An artificial neural network (ANN) is a non-linear, non-parametric modeling method that

can be applied extremely flexibly. ANNs allow re-creation of almost every complex rela-

tionship without any assumptions about the true functional relationships or distribution

of the dataset. Essentially, the idea of the neural network is to extract linear combinations

of the explanatory variables and then model the target variable(s) as a non-linear function

of these explanatory variables. ANNs consist of a certain number of nodes arranged in

different (hidden) layers.5 Each node in a layer is potentially connected to all the nodes

in the subsequent layer. The strengths of the connections between the nodes may differ

across the network, and these variations are represented by an adequate set of weights.

The unknown weights reflect the importance of the single inputs for each node and are

learned by the network during training.

5 Usually, only the output of the final layer (node) is visible outside the network; consequently, this
layer (node) is often called the output layer (node), whereas the layers (nodes) inside the network are
referred to as hidden layers (nodes).
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To construct the ANN, the input information enters the network and then passes forward

through each subsequent layer until it reaches the output layer. ANNs passing on infor-

mation in only one direction are referred to as feedforward networks.6 When constructing

feedforward ANNs from left to right, each node in each layer uses the weighted sum of all

nodes from its left side as input and generates an outcome, which is used as the new input

values in the next layer on its right side. The transformation from a node’s aggregated

input into the output is carried out via an activation function, which essentially ensures a

smooth transition of changes in the input values.

As LGDs are commonly known to be difficult to predict, especially using parametric meth-

ods, the high flexibility of ANNs seems to be suitable for detecting additional patterns in

the data and improving the prediction performance. We therefore fit a two-layer feedfor-

ward neural network including one hidden layer, as described by MacKay (1992), Forese

and Hagan (1997), and Rodriguez and Gianola (2016). The model is given by

LGDi =
s∑

k=1

wk · gk

bk +

p∑
j=1

xij · αkj

+ εi, i = 1, . . . , n, (IV.5)

where αkj represents the weight of the j-th input to the network; xij denotes the included

information of contract i; s and p are the number of the nodes and input variables,

respectively; and bk is the bias of the k-th node.7 Moreover, wk is the weight of the k-th

node and determines the with wk weighted influence of this node on the model outcome,

i.e., the LGD.

IV.4 Error measures, out-of-sample testing, and model stability

To compare the quality-of-fit of the in-sample and out-of-sample LGD predictions, we

apply two different error measures that have been widely discussed in the literature on

6 In contrast to other types of ANNs, such as recurrent neural networks, there is no feedback between
the layers. However, feedforward ANNs with only one hidden layer and a sufficient number of nodes
in the layers can fit any finite mapping problem.

7 The bias is an additional intercept added to each hidden node, and it is connected to all the nodes
in the next layer and none in the previous one. It stores the constant input one, which allows the
activation function to be shifted to the left or right. Hence, the bias can be interpreted as the intercept
of the linear combinations of the inputs.
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forecasting and estimation. These are the mean absolute error (MAE) and the root-mean-

square error (RMSE).8 The MAE is given by

MAE :=
1

|F|
∑
i∈F

∣∣∣LGDi − L̂GDi

∣∣∣ , (IV.6)

and the RMSE, which is conceptually related to the SSE used in the RT, is given by

RMSE :=

√
1

|F|
∑
i∈F

(
LGDi − L̂GDi

)2
, (IV.7)

where L̂GDi denotes the predicted LGD for observation i, and F ⊆ {1, 2, ..., n} is the set

of in-sample and out-of-sample observations, respectively.

For the interpretation of the two measures, a lower value indicates a better prediction

accuracy of the method; hence, lower values of the error measures are desirable. With

respect to the handling of outliers, the RMSE penalizes outliers more than the MAE

does as it increases quadratically with the deviations between the actual observed LGD

and its predicted value. Hence, we expect that methods predicting relatively constant

differences between the observed and predicted LGD across all observations will lead to a

lower RMSE but probably higher values for the MAE. In contrast, methods predicting a

higher proportion of outliers should perform worse on RMSE.

Finally, we compute a method’s R2 as a common measure of the quality-of-fit of regression

methods, which is given by

R2 := 1−

∑
i∈F

(
LGDi − L̂GDi

)2

∑
i∈F

(
LGDi − LGD

)2 , LGD :=
1

|F|
∑
i∈F

LGDi. (IV.8)

The R2 quantifies the variance that can be explained by the respective method. Higher

values indicate greater explanatory power. By construction, R2 can lie outside the unit

interval when applied to methods other than OLS regression. However, the traditional R2

defined above is commonly used in research and practice and can be computed for all our

methods.9

8 See, for instance, Zhang and Thomas (2012) for an application of LGD prediction of unsecured
consumer loans and credit cards.

9 See Loterman et al. (2012) for a discussion of the applicability of our traditional R2 to non-linear
methods and possible generalizations.
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In-sample predictions are derived from the whole dataset. To produce robust out-of-

sample results, we implement a 500-times bootstrap cross-validation as follows: In the

first step, the dataset is randomly split into a training dataset consisting of 75% of all

observations and a test dataset containing the remaining 25% of observations 500 times. In

the second step, all methods are first calibrated on the training datasets. Subsequently, the

predictions are conducted on the test datasets. The out-of-sample errors for all measures

are computed as the respective mean error measures over all 500 iterations.

In-sample predictions are not necessarily a good indicator of reliable out-of-sample pre-

dictions. This might be particularly true for unstable methods, i.e., methods where the

in-sample and out-of-sample prediction accuracies deviates significantly. To evaluate the

stability of our methods, as well as the validity of our in-sample and out-of-sample pre-

dictions, we compute the Janus quotient, which is given by

Janus quotient :=

√√√√√√ 1
m

∑m
i=1

(
LGDi − L̂GDi, out

)2

1
`

∑`
i=1

(
LGDi − L̂GDi, in

)2 , (IV.9)

where L̂GDi, in is the in-sample prediction and L̂GDi, out represents the out-of-sample

prediction of the LGD of contract i, while m and ` are the number of observations in

the in-sample and out-of-sample datasets, respectively (Gadd and Wold (1964)). Along

these lines, stable methods should have virtually the same prediction errors in-sample and

out-of-sample. According to Equation (IV.9), stable methods are therefore characterized

by a Janus quotient close to one. A Janus quotient greater (less) than one indicates that

the out-of-sample error is greater (less) than the in-sample error.

IV.5 Model calibration

In this subsection, we provide detailed insights into how we tuned the models’ parametriza-

tion to ensure the comparability of our results.10 We test several combinations of each

methods’ main parameters and choose the parametrization with the overall best out-of-

sample performance on MAE and RMSE in both the forecasting and estimation cases

for all analyses. By doing so, we aim at analyzing only methods throughout this pa-

10 All unreported calibration results are of course available from the authors upon request.
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per calibrated with comparable parameter settings.11 Thus, our results are almost surely

not boosted by comparing unreasonable parameter settings or other discretionary opti-

mizations. Even though the results differ in magnitude for other parameter settings, the

overall order of the methods in terms of their prediction accuracy remains unchanged for

other comparable parameter values. In the same vain, the methods virtually identify the

same variables as important with respect to their influence on the prediction accuracy

irrespective of the used parametrization.

For the non-parametric regression methods, namely OLS and Tobit regressions, optimiza-

tion possibilities are naturally limited and, more importantly, there is no need to optimize

any parameter choices. Nevertheless, we re-estimate both methods using standard errors

clustered on a contractual level instead of using unclustered standard errors. Our results

are robust to both options.

In the case of RTs, the two most important parameters are the minimum number of

observations in any terminal leaf node and the choice of the stop criterion defining when

the algorithm stops splitting the tree. As regards the latter, the stop criterion is given by a

minimum increase in R2 by a predefined value in this paper. We examine the in- and out-

of-sample model performance for the values 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and

0.0001. As for the former parameter, we start with a minimum number of one observation

in any leaf node and replace it gradually with 3, 5, 7, 10, 15, and 20. Defining lower

limits for the number of observations in the leaf nodes is crucial to cope with overfitting.

Otherwise, a RT based on n observations and containing n − 1 splits will lead to perfect

in-sample predictions with each observation being its own prediction but rather poor

out-of-sample results. To make this explicit, the worst out-of-sample performance in the

forecasting as well as estimation case in terms of MAE and RMSE is indeed obtained using

a minimum increase of R2 of 0.001 with one observation only in the terminal leaf node.

Furthermore, the resulting parameter combinations show remarkable variations in terms

of their prediction accuracy making a careful parameter selection indispensable for RTs.

Our analyses are based on a minimum increase in R2 of 0.01 and the minimum number of

observations in the leaf nodes is set to 10.

11 Although we mainly consider the out-of-sample results for setting the final parametrization, we mon-
itor the methods’ in-sample performance as well. Comparing the in- and out-of-sample results clearly
indicates that overfitting is a serious concern for non-parametric methods since the non-parametric
methods performing best in-sample show commonly the worst out-of-sample performance. Hence,
mainly focusing on the out-of-sample errors while still monitoring the in-sample results ascertain that
working with methods overfitting the data in-sample is most likely avoided.
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With respect to the RFs, we vary the number of variables randomly sampled as candidates

at each split from 1 to 8 in steps of 1 and the number of trees in the forest from 50 to

250 in steps of 50. A thorough choice of the number of trees to grow in the forest is

important in order to balance prediction accuracy and computational complexity. On

the one hand, if the forest encompasses too few trees while the number of observations

is rather large, some observations may not (or just seldom) be considered for predictions

because the RF selects a subset of all observations and variables (which is also varied

during the model calibration) to grow a tree which in turn will result in a significant

loss of predictive power. On the other, simply assuming a sufficient large number of trees

does not necessarily improve the prediction performance but increases computational costs

rapidly. Interestingly, for the forecasting and estimation case, the out-of-sample accuracy

in terms of MAE and RMSE is rather robust to the choice of the number of trees and

the amount of randomly sampled candidates at each split. However, the R2 exhibits

a substantial variation across the considered parameter combinations. Thus, we try to

identify a threshold beyond which no significant improve in the predictive power can be

expected, whereas computational complexity would soar. Ultimately, we end up with 150

trees to compose the forest, each tree randomly sampling 3 variables at each split.

Finally, for the ANNs, the determination of the initial weights is carried out as described in

Nguyen and Widrow (1990). The activation function is specified by the sigmoid function

gk(x) = exp(2x)−1
exp(2x)+1 . The error εi in Equation (IV.5) depends on the number of nodes and can

be made sufficiently small for in-sample predictions by adding hidden nodes. In this case

however, the method will overfit the data and the error in the out-of-sample predictions

increases quickly. As the choice of the optimal number of hidden nodes is data dependent

and there is no common rule for determining it, we follow an approach similar to that

of Qi and Zhao (2011) and optimize our network with several numbers of hidden nodes

to obtain the optimal out-of-sample prediction; we use this configuration in all in-sample

analyses to ensure the comparability of our results.

We test a different number of nodes, ranging from one to 150.12 We keep the number of

layers fixed, since one hidden layer is generally sufficient to reflect the underlying patterns

in the data moderately well. For the forecasting and estimation cases, the in-sample

and out-of-sample accuracies suggest a contrasting picture for an increasing number of

neurons in the hidden layer. Starting with a small number of nodes in the out-of-sample

tests, a small increase of the number of nodes causes the MAE and RMSE to deteriorate

12 In detail, we construct several networks with different numbers of nodes ranging from 1 to 2, 3, 4, 5,
10, 15, 20, 30, and so on, up to 150.
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significantly. Moreover, the neural network is very sensitive to the parametrization and

starts to memorize the patterns in the data already for a small number of nodes. We find

that the optimal number of nodes in our dataset is most likely three.

We use a Bayesian regularization algorithm to set the optimal weights of the network.

The algorithm minimizes the weighted sum of both the sum of the squared validation

errors and the sum of squares of the weights and biases. The algorithm randomly divides

the training dataset into calibration and validation sets. The calibration set is used to

compute and update the network weights and biases. These parameters are then validated

on the validation set, and the corresponding validation error is monitored. This process is

repeated until the algorithm terminates. The validation error generally decreases during

the initial phase of training and typically increases once the network starts to overfit the

data. The algorithm stops training before overfitting the data, and the weights and biases

at the minimum of the validation error are returned. Moreover, many model parameters

are penalized since the sum of the squared model parameters clearly increases with respect

to the number of nodes.
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V Analysis

V.1 In-sample results

In the first step, the analysis of the empirical findings of our paper concentrates on the in-

sample forecasting performance of the parametric and non-parametric methods. Thus, all

methods are only trained with the available information when the contract was concluded.

The results are shown in columns (1) to (3) of Table 2. In terms of the error between

the realized LGD and its forecast, the distinctly smaller in-sample errors reported for the

MAE and RMSE clearly indicate that the RF outperforms the other methods for both

error measures. This superior forecasting performance of RFs can be derived from their

construction. As some of the trees included in the RF already contain the observations that

will be used for the in-sample forecasts, these forecasts will be predicted nearly perfectly,

thereby improving the in-sample forecasting accuracy.13 Likewise, we observe accurate

in-sample forecasts for the ANN yielding to in-sample errors which are well ahead of the

other methods. While the forecasting accuracy of the RTs and the parametric regression

methods differs only slightly for the MAE, the RTs have remarkably lower forecasting

errors as measured by the RMSE. This finding indicates that OLS and Tobit regressions

are more prone to predicting outliers, which are more strongly penalized by the RMSE.

Table 2: In-sample quality-of-fit measures.

(1) (2) (3) (4) (5) (6)

Method MAEfore RMSEfore R2
fore MAEest RMSEest R2

est

Hist. avg. 0.2739 0.3984 0.0000 0.2739 0.3984 0.0000
OLS 0.2672 0.3903 0.0403 0.2519 0.3644 0.1632
Tobit 0.2674 0.3904 0.0395 0.2525 0.3645 0.1627
RT 0.2673 0.3818 0.0816 0.2461 0.3372 0.2837
RF 0.1484 0.2248 0.6816 0.1158 0.1711 0.8155
ANN 0.2507 0.3779 0.1000 0.2254 0.3308 0.3103

NB: The error measures, namely the MAE, RMSE, and R2, are subscribed with “fore” and “est”
to indicate forecasting and estimation results, respectively.

13 It should be noted that the non-parametric methods can reproduce the in-sample data almost perfectly.
However, this substantially enhances overfitting the data, which in turn increases the out-of-sample
forecasting error. Thus, a high in-sample prediction accuracy may be misleading in terms of the
out-of-sample prediction performance. As this paper is strongly devoted to the assessment of the out-
of-sample results of different prediction methods, we refrain from boosting the in-sample prediction
accuracy.
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Concerning the variance that can be explained by the in-sample forecasts as measured

by the R2, we find a superior explanatory performance of the non-parametric methods.

The rather high R2 values for RTs, ANNs, and particularly RFs, underline their ability to

recreate the structure of the dataset to a significant extent.14 Overall, the results of the

in-sample forecasting analysis provide initial evidence that explicitly modeling the LGD

by means of parametric and non-parametric methods is more advantageous than simply

relying on historical averages, which show the worst performance across all quality-of-fit

measures.

In the estimation part of our analysis, we model the LGD with all information known

after the work-out process is completed. This dataset contains most of the information

considered in the forecasting analyses and the ex-post variables presented in Table 1.15

Analyzing the in-sample estimation results presented in columns (4) to (6) of Table 2, we

note that the prediction errors are predominantly smaller than in the forecasting case.

Hence, the information becoming visible after the work-out process is completed adds

valuable input for all methods, leading to considerably better in-sample LGD predictions.

Concerning the quality-of-fit of our methods, the RFs again give the most accurate LGD

estimations clearly away from the other methods. The ANN exhibits the second-best

performance on all error measures. The RT performs slightly worse than the ANN, but it

shows a superior estimation performance to that of the parametric regression techniques.

More specifically, RTs yield lower RMSE values suggesting that RTs give less volatile

estimations. We attribute this to the implemented splitting method used to construct the

RT, which mostly prevents the prediction of outliers, since those values are isolated by the

observed exogenous variables.

Concerning the estimation performance of the parametric regression methods, we observe

extremely similar results for OLS and Tobit regressions for all error measures in both the

forecasts and estimations. Thus, the theoretical advantage of Tobit regressions in terms of

explicitly considering the restricted interval of leasing LGDs does not significantly affect

the in-sample prediction accuracy. Even if OLS estimations may be inconsistent in the

case of LGDs, this tends to affect their prediction performance only marginally. Thus,

OLS regression seems to be an easily implementable, understandable benchmark method

for (parametric) LGD predictions.

14 Note that the R2 of the historical average for in-sample predictions equals zero by definition.
15 The initial leasing size (SIZE ORI) is replaced by the exposure at default (SIZE DEF ) and quar-

terly GDP growth (GDP INI) is substituted with quarterly insolvency rates (INSOL DEF ).
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In summary, and as in the forecasting case, the non-parametric RF, ANN, and to some

extent, RT, outperform the parametric methods, suggesting that their ability to recreate

the structure of the dataset is preserved for an extended set of information. This is

emphasized by the comparably high values of R2 for the non-parametric methods. Thus,

we conclude that the flexibly applicable non-parametric methods are generally more suited

to achieve better in-sample estimations of leasing LGDs.

V.2 Out-of-sample results

The out-of-sample forecasting results are presented in columns (1) to (3) of Table 3. It

is remarkable that RFs again provide the most accurate forecasts for both error measures

and still exhibits a notable distance from the other methods. Among these approaches, the

RT obtains the worst performance, and it is even outperformed by the historical average.

The forecasting accuracy of OLS and Tobit regressions is better than that of the historical

average for the MAE and RMSE. These findings are confirmed by the t-values from the

pairwise t-tests of differences in the mean values of the MAE and RMSE for each pair

of methods reported in Panel A of Table 5 in the Appendix. ANNs perform similarly to

the parametric regression methods for the MAE and RMSE. For the MAE, all methods

but the RT show significantly superior forecasting performance compared to the historical

average, while for the RMSE, this only remains valid for the RFs. The variations in the

results across the different error measures suggest that a sound evaluation of the methods’

forecasting performance should be based on diverse error measures.

Table 3: Out-of-sample quality-of-fit measures.

(1) (2) (3) (4) (5) (6)

Method MAEfore RMSEfore R2
fore MAEest RMSEest R2

est

Hist. avg. 0.2742 0.3933 -0.0046 0.2738 0.3942 -0.0051
OLS 0.2724 0.3920 0.0018 0.2574 0.3698 0.1116
Tobit 0.2678 0.3922 0.0022 0.2502 0.3712 0.1090
RT 0.2755 0.3986 -0.0381 0.2540 0.3642 0.1187
RF 0.2538 0.3788 0.0680 0.2246 0.3270 0.2962
ANN 0.2698 0.3935 -0.0049 0.2483 0.3638 0.1409

NB: The error measures, namely the MAE, RMSE, and R2, are subscribed with “fore” and “est”
to indicate forecasting and estimation results, respectively.

Overall, we conclude that forecasting leasing LGDs is rather difficult if the valuation is

tested for unknown contracts, and equally importantly, if the methods can only rely on
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a restricted set of information known when a contract was concluded. In addition, the

non-parametric methods seem to be slightly superior to the parametric ones, especially

the extremely flexible RF.

Including additional information that became visible after the work-out was concluded

leads to the estimation results displayed in columns (4) to (6) of Table 3. As expected, all

methods obtain remarkably better out-of-sample estimations than in the forecasting case,

underlining that the new information becoming available after the work-out improves

prediction accuracy for parametric and non-parametric methods. As in the forecasting

case, the non-parametric RFs obtain the best estimation accuracy. More specifically, the

RF outperforms the other methods in terms of the MAE, RMSE, and R2, while the ANN

shows the next-best results. Thus, our findings provide strong evidence that the non-

parametric RFs and ANNs yield the most accurate out-of-sample predictions of leasing

LGDs.

In contrast to the forecasting case, the pairwise t-tests of differences in the mean values

of the MAE and RMSE in Panel B of Table 5 clearly indicate that the improvements

in estimation accuracy of all methods compared to the historical average are statistically

significant (see Appendix). Again, RFs give significantly better LGD estimations than any

other method. The significant differences in the prediction accuracy across our methods

underline that predicting leasing LGD requires a thorough assessment of the methods by

banks and supervisors to obtain reliable results.

We also compare the out-of-sample forecasting and estimation results presented in Table

3 with the in-sample results discussed in the previous section. We generally observe an

increase in all error measures; this is much more pronounced for the best-performing in-

sample RFs and ANNs than for the parametric regression methods and the RTs. This

supports the widespread finding that out-of-sample predictions are usually less precise

than their in-sample counterparts. The explanatory power of the methods as measured

by the R2 decreases remarkably across all methods and even turns negative for the RT,

the ANN, and the historical average in the forecasting case and for the historical average

in the estimation case.

In contrast to the in-sample estimation results, Tobit regressions show significantly bet-

ter forecasting and estimation performance compared to OLS regressions for the MAE.

However, they perform worse – albeit not significantly – for the RMSE, as can be seen

from the t-tests in Table 5 in the Appendix. This may suggest that the theoretically more
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adequate modeling of leasing LGDs by means of Tobit regressions could be particularly

important for out-of-sample predictions. However, the deviations in the RMSE between

Tobit and OLS regressions are rather small, suggesting that the latter are still a reasonable

benchmark method.

The overall prediction errors of the LGD estimations are predominantly smaller than in

the forecasting case for both the in- and out-of-sample findings. Therefore, the added ex

post variables most likely contain useful information to improve the prediction accuracy.

The performance increase should serve as an incentive for banks to explicitly model the

LGDs of their leasing portfolios and collect comprehensive information about their port-

folios including defaulted and/or recovered leases. Our results reveal that non-parametric

methods, except the RTs, show superior performance to parametric approaches because

they are rather able to exploit the multifarious inputs of our dataset.

In the next step, we assess the variation of the forecasting and estimation errors across the

500 out-of-sample cross-validation iterations by computing the standard deviations of the

MAE and RMSE for each method across all out-of-sample iterations. In the same vein, this

approach is helpful in generating reliable results concerning the robustness of the methods

across the iterations. Table 4 reports the results. Except for the historical average, the

standard deviations for the estimation error measures are smaller than for the forecasting

errors, suggesting that including additional variables improves the methods’ stability in

matters of outliers in the estimation of LGDs. Comparing the standard deviations across

the methods, it turns out that the parametric regression methods tend to show larger

variations in their prediction errors for the RMSE. This finding underlines that OLS and

particularly Tobit regressions are slightly less robust in predicting leasing LGDs than

the other methods are. In terms of the RMSE, the tree-based methods yield the lowest

variation across the iterations, suggesting that these methods are rather robust since it is

unlikely that their average prediction accuracies are biased by extreme outliers.

Finally, comparing the in- and out-of-sample quality-of-fit measures for LGD predictions

enables us to investigate whether in-sample predictions are a reliable indication for the

out-of-sample performance. As can be seen from the Janus quotients given in Table 4,

the out-of-sample errors are generally greater than the in-sample errors, as indicated by

values of the Janus quotient greater than one. Likewise, the Janus quotient calculated

for LGD estimations increases for all but the parametric regression methods compared to

LGD forecasting since the deviations between in- and out-of-sample errors rise more for

LGD estimations than for forecasts. Evaluating the overall stability of the methods, values
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Table 4: Standard deviations of the out-of-sample forecasting and estimation errors and Janus quotients.

Forecasting Estimation Janus quotient

Method MAE RMSE MAE RMSE Forecasting Estimation

Hist. avg. 0.0137 0.0543 0.0143 0.0553 0.9960 0.9995
OLS 0.0134 0.0540 0.0123 0.0486 1.0159 1.0281
Tobit 0.0143 0.0562 0.0134 0.0535 1.0101 1.0176
RT 0.0145 0.0504 0.0130 0.0339 1.0713 1.1084
RF 0.0138 0.0536 0.0119 0.0349 1.7193 1.9199
ANN 0.0143 0.0554 0.0127 0.0486 1.0337 1.0653

NB: Standard deviations for the out-of-sample forecasting and estimation errors are calculated with 500 out-of-
sample cross-validation iterations.

around one for the OLS and Tobit regressions, as well as the ANNs and RTs, indicate that

most of our methods are stable. Thus, they are suitable methods for LGD forecasting

and estimation. For these methods, the deviations between the in- and out-of-sample

prediction accuracies do not weaken the stability of the methods; consequently, in-sample

predictions can be considered as a first indication of the out-of-sample quality-of-fit for

stable methods.

Concerning the RFs, the corresponding Janus quotients are clearly above one, which is not

too surprising given the considerably low in-sample performance errors. However, the RFs

obtains the best forecasting and estimation performance for the MAE and RMSE both in-

and out-of-sample. Thus, accurate leasing LGD estimations should rely on RFs, but the

in-sample prediction accuracy may overstate the out-of-sample quality-of-fit. This may

be particularly true if the flexible RF algorithm has recreated the data well, leading to

comparably good in-sample results but a loss in the prediction power in the out-of-sample

analysis. Overall, we find a slight tendency for non-parametric methods to be more prone

to instability than parametric methods are.

V.3 Variable importance

In this section, we target the question of what features drive the results of the predic-

tion techniques. As the complex non-linear methods outperform the linear methods in

many cases, we raise the question of what information is processed by the non-parametric

methods that is not processed by the linear methods. To generate a visual comparison,

we construct a measure built on the idea of the permutation importance, which is com-
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monly used in RF applications. The measure, as we use it here, is constructed by first

calculating an error measure, such as the MAE, for each prediction method using the

entire dataset. Second, we permute the values of each independent variable used in the

prediction and calculate the new error measure for each method. We then calculate the

increase or decrease in the error measure relative to the non-permuted case. For the out-

of-sample prediction, we calculate the relative change in error measures after permutation

on the same cross-validation training and test datasets as used in the 500 cross-validation

iterations above.

The values for the variable importance as measured by changes in the MAE when per-

muting a single variable are plotted in Figure 2 and Figure 3.16 The exact numbers are

presented in Table 6 and Table 7 in the Appendix. There is an axis for each permuted

variable. The deterioration in the error measure after the permutation is given by the

position on these axes. Points from the same method are connected by vertical lines to

illustrate the differences.

The results for the in-sample forecasts are plotted in Figure 2a. Except for the RF, the

increase in error terms is generally low. This may indicate a weakness of the available

characteristics in making predictions for the LGD. The highest importance measure val-

ues for the RT and the ANN are around 7% and 8%, respectively. The highest values for

the regression methods are even lower, at around 2%. Starting with the values for the RT,

this method almost solely relies on the internal rating (RAT INT BOND), where it has

its only spike. All other measure values are close to or on the zero line. For the linear

methods, while all values are generally low, special lease payment (SPEC PAYMENT ),

industry (INDUSTRY ), asset type (ASSET ), and collateral (D COLL) seem to stand

out slightly. In addition, the internal rating (RAT INT BOND), which was not signifi-

cant in the regressions, stands out slightly in size. The ANN uses similar variables to the

linear methods but also incorporates the contract type (CONTRACT ), dummy for lessees

with limited liability (D LIMITED), and dummy for multiple objects (D OBJMULT ).

Especially, the object type (ASSET ) and internal rating (RAT INT BOND) have a

comparably stronger effect on the importance measure. The RF generally has more im-

portance peaks. It has particularly high values for the GDP growth (GDP INI), initial

size (SIZE ORI), internal rating (RAT INT BOND), distance (DISTANCE), and

three categorical variables (ASSET , INDUSTRY , and CONTRACT ). We stress the

fact that it has some of its highest importance measure values for characteristics that

16 The values for the RMSE are qualitatively the same and hence not reported. All unreported results
can of course be made available on request.
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Figure 2: Forecasting (upper panel) and estimation (lower panel) changes in the MAE for permuting the
respective variables in the in-sample prediction.
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(a) Forecasting.
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(b) Estimation.

NB: The permutation changes in the error measures are divided by 10 for the RF and by 2 for the
ANN and RT. For ASSET , INDUSTRY , and CONTRACT , we permute the corresponding dummy
variables.
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were almost omitted by the four other methods. The ANN also incorporates some more

information than the regression methods.

The results for the in-sample estimation are presented in Figure 2b. It is immediately ap-

parent that the overall level of importance measure values is considerably higher. Given the

very high measure values, this is substantially driven by the newly acquired information

about the proportion outstanding (PROP PAID), exposure at default (SIZE DEF ),

and in the case of the RF, the work-out duration (DUR WORK). The results for the

earlier available characteristics remain similar. For the case of the RT, only the out-

standing proportion (PROP PAID) and internal rating (RAT INT BOND) are im-

portant. For the linear methods, special lease payment (SPEC PAYMENT ), internal

rating (RAT INT BOND), object type (ASSET ), and industry type (INDUSTRY )

contain important information. However, given the new information, the insolvency

rate (INSOL DEF ) and contract duration (DUR CONTRACT ) become more impor-

tant as well. The ANN generally resembles the linear methods on many points, but it

makes less use of the special lease payment (SPEC PAYMENT ) and internal rating

(RAT INT BOND) variables and more use of contract type (CONTRACT ). In addi-

tion to the work-out duration (DUR WORK), the RF incorporates information about

distance (DISTANCE) that is not relevant in the other model curves.

The out-of-sample forecasting results are presented in Figure 3a. When compared to the

in-sample plots, the values are generally closer to the zero line for many characteristics.

In the case of the ANN, some of the information that was relevant in the in-sample case

(CONTRACT , D LIMITED, and D OBJMULT ) no longer seems important. The

ANN results generally resemble those of the regression methods. The RT mainly relies on

the internal rating (RAT INT BOND). This characteristic is also especially important

for the RF and ANN. Apart from the RT, all four methods use information from the

asset type (ASSET ) and industry type (INDUSTRY ). The RF can use some of the

characteristics in out-of-sample prediction that are almost neglected by the other methods

(DISTANCE, DUR CONTRACT , SIZE DEF , and GDP INI). This is interesting

since, unlike the ANN, which could not continue to use some of its in-sample information

out-of-sample, the RF can generalize patterns to new contracts.

The out-of-sample estimation results in Figure 3b appear similar to the in-sample ones.

There is an accentuated spike for the proportion of the contract value that is still due at

default (PROP PAID) for all five methods. The two other newly added characteristics

(SIZE DEF and DUR WORK), internal rating (RAT INT BOND), and object type
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Figure 3: Forecasting (upper panel) and estimation (lower panel) changes in the MAE for permuting the
respective variable in the out-of-sample prediction.
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(b) Estimation.

NB: The permutation changes in the error measures are divided by 2 for all non-parametric methods.
For ASSET , INDUSTRY , and CONTRACT , we permute the corresponding dummy variables.
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(ASSET ), are highly important across the five methods. The RT generally uses fewer

characteristics. The RF and ANN use the contract type (CONTRACT ), which is nearly

neglected by the other methods. The RF further makes use of the distance (DISTANCE).

The additional information employed by these methods is less apparent in this case. The

results tend to be largely driven by the characteristics that become available after default.

To summarize the results of this section, given the especially low levels of our signifi-

cance measure, prediction again appears difficult in the forecasting case, although there

are some characteristics that seem relevant and carry over to new lessees. This supports

previous findings that forecasting methods generally perform weakly. The internal rating

(RAT INT BOND), object type (ASSET ), and industry (INDUSTRY ) may convey

some relevant information here. The RF processes some information that may be omitted

by the other methods, which results in better performance in the prediction accuracy.

To a lesser extent, this is also true for the ANN. When comparing the forecasting and

estimation plots, it is apparent that the default characteristics add much valuable infor-

mation. The estimation results are mainly driven by these new characteristics. This is

especially the case for the outstanding relative exposure (PROP PAID), which has far

higher importance measure values than any of the other characteristics in either the in-

sample or out-of-sample estimations. Concerning adequate credit risk management, as

the outstanding relative exposure can be calculated at any time during the life of the

lease, banks should continuously update this information to assess the (expected) loss

rates based on reliable predictions consistent with the regulatory requirements for inter-

nal LGD estimates (EU Regulation No 575/213, Article 179). In addition to the three

default characteristics, relevant characteristics that extend to new observations seem to

be the internal rating (RAT INT BOND) and object type (ASSET ). The more com-

plex methods incorporate some additional information, but the differences from the linear

methods are less apparent from the plots. Given that the estimation results are mainly

driven by default characteristics, methods that do not consider the time dimension may

not be adequate to some extent.
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VI Conclusions

Although leasing has become increasingly important for firms in the last decade, little is

known about the predictability of the LGD of leases and, even less is understood about

which variables indeed improve the prediction accuracy. Using a unique dataset of 1,184

defaulted leases over the period from 2009 to 2014, we analyze the in-sample and out-of-

sample performances of parametric and non-parametric methods to forecast and estimate

LGDs. We compare the prediction accuracy of the parametric and non-parametric ap-

proaches by drawing on several performance measures. To the best of our knowledge, this

is the first paper to study RFs in the context of leasing LGD predictions. Moreover, we

contribute to addressing the question of how prediction accuracy depends on the set of

available information and hence on the point in time when the LGD is predicted. We

differentiate between information already known when the contract is concluded and ad-

ditional information becoming available during the work-out process or the lifetime of the

lease. In the past, some non-parametric methods have been frequently criticized for being

impenetrable (“black-box”). We explicitly address these concerns and employ a mea-

sure of variable importance to examine which explanatory variables achieve the greatest

improvements in LGD prediction accuracy in each of the methods.

Our analyses reveal that the LGD predictions of non-parametric methods – especially

RFs and in most cases ANNs – are statistically significantly more accurate than those

of traditional linear methods. This holds for in-sample and out-of-sample tests, even

when properly controlling for overfitting. By conducting a comprehensive number of 500

bootstrapping iterations, we further support existing evidence that out-of-sample test-

ing is crucial for obtaining comparable and reliable results regarding model performance.

Against this background, banks using RFs, and to a slightly lesser extent ANNs, could im-

prove their LGD predictions remarkably, thereby generating competitive advantages over

other financial institutions. However, we acknowledge that implementing more complex

methods may induce higher efforts for banks and increase model risk.

Concerning the set of information included in the predictions, we find that conditional

models built on information becoming available at the time of default have much more ex-

planatory power and generate considerably better predictions than unconditional models.

In particular, the historical average of LGDs, which serves as a lower benchmark, is signif-

icantly outperformed by all considered linear and non-linear methods on all performance

measures. Here, the contract’s volume at the time of default and the stressed industry

conditions seem to significantly influence LGDs. Hence, our findings indicate that in ad-
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dition to lessee- and contract-related information, banks should also include information

becoming available during the recovery process.

To analyze the importance of our explanatory variables, we compute the relative changes

in the prediction errors for each method when permuting a single variable. We find

remarkable differences across the variables and methods, suggesting that strong differences

exist regarding their power to improve LGD forecasts and estimations. The exposure at

default in relation to lease’s original size, the age of the contract at the time of default, and

to some extent, the lessee’s internal rating seem to be the main determinants of accurate

LGD predictions. We conclude that banks should carefully analyze which variables are

driving their predictions to assess the credit risk of their leasing portfolios adequately and

avoid working with weak or even unstable methods.
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VII Appendix

Table 5: Results of pairwise out-of-sample t-tests of differences in the mean values of MAE and RSME for each
pair of methods.

Method (1) (2) (3) (4) (5) (6)

P
a
n
e
l
A
.
F
o
r
e
c
a
st
in

g

MAE

(1) Hist. avg. -

(2) OLS 2.1818* -

(3) Tobit 7.2522*** 5.1931*** -

(4) RT -1.3722 -3.5047*** -8.3994*** -

(5) RF 23.5192*** 21.5863*** 15.7572*** 4.2307*** -

(6) ANN 5.0544*** 2.9355** -2.2783* 6.2793*** -18.3672*** -

RMSE

(1) Hist. avg. -

(2) OLS 0.3976 -

(3) Tobit 0.3163 -0.0735 -

(4) RT -1.5827 -2.0009 -1.8814 -

(5) RF 4.2609*** 3.8748*** 3.8686*** 6.0175*** -

(6) ANN -0.0327 -0.4267 -0.3456 1.5329 -4.2534*** -

P
a
n
e
l
B
.
E
st
im

a
ti
o
n

MAE

(1) Hist. avg. -

(2) OLS 19.5377*** -

(3) Tobit 26.9733*** 2.2125 -

(4) RT 22.9942*** 4.2294*** -4.5396*** -

(5) RF 59.3041*** 42.8420*** 31.9002*** 37.3140*** -

(6) ANN 29.8562*** 11.4081*** 2.2125 6.9285*** -30.6003*** -

RMSE

(1) Hist. avg. -

(2) OLS 7.3891*** -

(3) Tobit 6.6765*** -0.4206 -

(4) RT 10.3194*** 2.1096 2.4546* -

(5) RF 23.0023*** 16.0260*** 15.4932*** 17.1503*** -

(6) ANN 9.2278*** 1.9674 2.2921 0.1729 -13.7659*** -

NB: The table displays pairwise t-statistics for differences in mean for the forecasting (Panel A) and estimation
(Panel B) cases with p-values adjusted according to Holm (1979). Positive values indicate that the prediction
accuracy for the method on the vertical axis is better than that for the method on the horizontal axis and vice
versa. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels.
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Table 6: In-sample forecasting and estimation changes in MAE for permuting the variables in each method.

Forecasting Estimation

Variables OLS Tobit RT RF ANN OLS Tobit RT RF ANN
C

o
n
tr

a
c
t

C
h

a
ra

c
te

ri
st

ic
s SIZE ORI -0.0064 -0.0079 0.0000 0.3303 0.0092 - - - - -

D COLL 0.0106 0.0108 0.0000 0.1278 0.0349 0.0115 0.0119 0.0000 0.1311 0.0255

DUR CONTRACT -0.0032 -0.0020 0.0000 0.2041 0.0011 0.0123 0.0134 0.0000 0.2096 0.0062

SPEC PAYMENT 0.0176 0.0169 0.0000 0.1352 0.0234 0.0263 0.0253 0.0000 0.1462 0.0262

D OBJMULT 0.0009 0.0008 0.0000 0.0561 0.0325 -0.0008 -0.0011 0.0000 0.0671 0.0087

CONTRACT -0.0031 -0.0029 0.0000 0.2070 0.0428 -0.0081 -0.0080 0.0000 0.2411 0.1088

ASSET 0.0144 0.0175 0.0000 0.2226 0.0840 0.0381 0.0434 0.0000 0.2367 0.1951

L
e
ss

e
e

C
h

a
ra

c
.

D LIMITED 0.0046 0.0049 0.0000 0.1636 0.0324 0.0019 0.0022 0.0000 0.1538 0.0296

RAT INT BOND 0.0127 0.0156 0.0688 0.3644 0.0614 0.0387 0.0422 0.0521 0.3617 0.0256

DISTANCE 0.0050 0.2983 0.0055 0.0057 0.0053 0.0000 0.3103 -0.0005 -0.0005 0.0021

INDUSTRY 0.0199 0.0228 0.0000 0.2656 0.0551 0.0147 0.0168 0.0000 0.2674 0.0372

D MOV ED - - - - - 0.0003 0.0003 0.0000 0.0253 0.0116

D
e
f.

C
h

a
r. DUR WORK - - - - - 0.0116 0.0103 0.0070 0.3518 0.0200

SIZE DEF - - - - - 0.0296 0.0358 0.0000 0.3865 0.0958

PROP PAID - - - - - 0.0703 0.0649 0.2206 0.5828 0.1428

M
a
c
-

ro

GDP INI 0.0066 0.0071 0.0000 0.2744 0.0027 - - - - -

INSOL DEF - - - - - 0.0156 0.0159 0.0000 0.3399 0.0317

NB: For ASSET , INDUSTRY , and CONTRACT , we permute the corresponding dummy variables.
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Table 7: Out-of-sample forecasting and estimation changes in MAE for permuting the variables in each method.

Forecasting Estimation

Variables OLS Tobit RT RF ANN OLS Tobit RT RF ANN
C

o
n
tr

a
c
t

C
h

a
ra

c
te

ri
st

ic
s SIZE ORI 0.0049 0.0317 -0.0033 -0.0017 0.0117 - - - - -

D COLL 0.0086 0.0068 0.0001 0.0198 0.0245 0.0089 0.0049 0.0000 0.0172 0.0161

DUR CONTRACT 0.0055 0.0062 0.0050 0.0228 0.0077 0.0162 0.0110 0.0004 0.0249 0.0095

SPEC PAYMENT 0.0115 0.0093 0.0010 0.0116 0.0122 0.0200 0.0119 0.0002 0.0167 0.0130

D OBJMULT -0.0002 -0.0003 -0.0000 0.0018 0.0063 -0.0006 -0.0009 0.0000 0.0034 0.0045

CONTRACT -0.0025 -0.0011 0.0092 0.0176 0.0160 -0.0060 -0.0009 0.0006 0.0220 0.0489

ASSET 0.0117 0.0144 0.0001 0.0247 0.0425 0.0311 0.0247 0.0000 0.0260 0.0915

L
e
ss

e
e

C
h

a
ra

c
.

D LIMITED 0.0022 0.0003 0.0000 0.0160 0.0082 0.0043 0.0024 0.0000 0.0130 0.0122

RAT INT BOND 0.0108 0.0064 0.0446 0.0475 0.0588 0.0364 0.0066 0.0384 0.0489 0.0484

DISTANCE 0.0071 0.0089 0.0057 0.0327 0.0044 -0.0009 0.0000 0.0000 0.0277 -0.0001

INDUSTRY 0.0157 0.0160 0.0008 0.0243 0.0277 0.0144 0.0092 0.0002 0.0200 0.0303

D MOV ED - - - - - -0.0003 0.0001 0.0000 0.0025 0.0046

D
e
f.

C
h

a
r. DUR WORK - - - - - 0.0212 0.0223 0.0188 0.0426 0.0223

SIZE DEF - - - - - 0.0172 -0.0008 0.0232 0.0566 0.0470

PROP PAID - - - - - 0.0612 0.0876 0.1511 0.1154 0.0836

M
a
c
-

ro

GDP INI 0.0022 0.0013 0.0016 0.0216 0.0014 - - - - -

INSOL DEF - - - - - 0.0114 0.0077 0.0022 0.0290 0.0123

NB: For ASSET , INDUSTRY , and CONTRACT , we permute the corresponding dummy variables.
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